

Transforming the >\$50B neurodegenerative disease market with best-in-class treatments

Executive Summary Imagine a world without neurodegeneration

Who we are

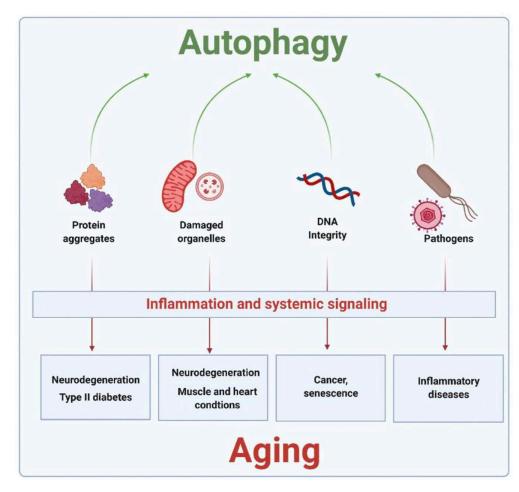
- Lean startup focused on genetic forms of neurodegeneration with lead program in Huntington's disease (HD)
- Team of experienced pharma executives and experts: scientists, drug development, operational leadership

What we do

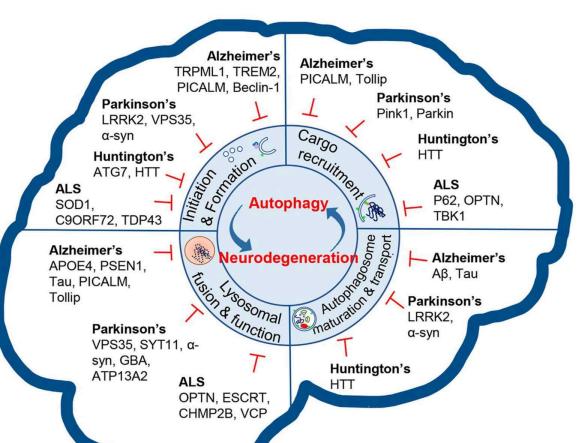
- Develop novel first-in-class, best-in-class disease modifying treatments with an innovative discovery approach
- Leverage expedited development and regulatory pathways

Why we win

- Targeting underlying cause of disease (precision medicine)
- Unique positioning with key differentiators and limited competition in a growing market of >\$9B for HD
- Strong initial traction
- Ability to scale to additional indications


Impaired proteostasis: A central hallmark of aging & disease

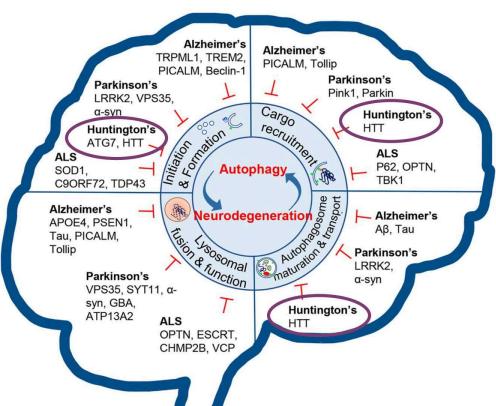
- **Loss of proteostasis** is among the most prominent and early age-related impairments
 - Affects integrity of proteins, organelles such as mitochondria and DNA
 - Accumulation of misfolded proteins appear as protein aggregates, particularly in brain
 - Affects cell's ability to clear damaged proteins, organelles and lipids by autophagy
 - Leads to accelerated aging and disease


Decline in autophagy correlates with aging & disease

Nieto-Torres & Hansen, Macroautophagy and aging-the impact of cellular recycling on health and longevity. Mol Aspects Med 2021

- Aging and development of age-relate diseases correlate with a decline in autophagy
 - Autophagy deficits lead to accumulation of damaged proteins, organelles, DNA integrity
 - Triggers cellular dysfunction followed by tissue damage
 - Tissue damage amplified by inflammation
 - Leads to disease
- Interventions that promote autophagy have beneficial effects on health and lifespan

Defective autophagy is implicated in neurodegeneration


Overview of the role of macroautophagy in the nervous system in health and neurodegeneration

- Defective autophagy is a common symptom in neurodegeneration
- Genetic mutations in multiple autophagy proteins are causative in neurodegenerative diseases
- Experimental increase in autophagy slows or reverses neurodegeneration in cell and animal models of neurodegeneration

From Fleming et al (2022).

Huntington's disease (HD): Origami's beachhead indication

From Fleming et al (2022)

Why Huntington's disease first?

- HD is a disease of accelerated aging
- Genetic disease caused by a mutation in a single gene called huntingtin (HTT)
- Mutant huntingtin (mHTT) protein misfolds and becomes toxic
 - Blocks autophagy at multiple points in pathway
- We know what an effective drug should do
- We know who to treat & what to measure in clinical trials

Huntington's disease by the numbers

- Autosomal Dominant: 50% progeny affected
- Average onset: 35 yrs (range: 30-50 yrs)
- Duration: 10 25 yrs
- Affected: 185,000 WW/ 45,000 US
 - 250,000 US at risk (~50% HD)
- TAM: >\$9B projected global sales in 2030*

*Coherent Market Insights, assuming 60% current symptomatics

Huntington's disease (HD) treatment options are grim

3 drugs with a single mechanism only partially treat movement symptoms with considerable side effects

No disease modifying treatment options exist

Prodromal 10-15 yrs

- · Movement abnormalities
- Cognitive changes
- Personality changes
 - $\circ \textbf{Depression}$
 - Suicide

Early ~ 5-7 yrs

- Involuntary movements
- Loss of coordination
- Cognitive deficits
- Depression/Suicide

Middle ~ 5-7 vrs

- · Requires constant care
- Dementia

Late ~ 5 yrs

- Institutionalization
- Bedridden
- Non-verbal

Key Considerations for Therapeutic Design

- Systemic disease affects brain and body
- Normal HTT protein is <u>critical</u> for normal cell function
- Reducing mutant HTT (mHTT) halts & reverses disease in HD models
- Reduction of HTT validated by genetics and clinical trials (PTC518, AMT-130)

We are pioneering a groundbreaking approach aimed at

- Slowing, halting or reversing disease progression of Huntington's disease for all patients
- Targeting underlying cause of disease, toxic misfolded protein, via protein degradation through selective autophagy
- Using small molecule modality to treat entire disease (brain & body) and democratize access to our medicines

Our precision medicine approach represents a paradigm shift by selectively targeting toxic misfolded protein to restore normal function and extend health span

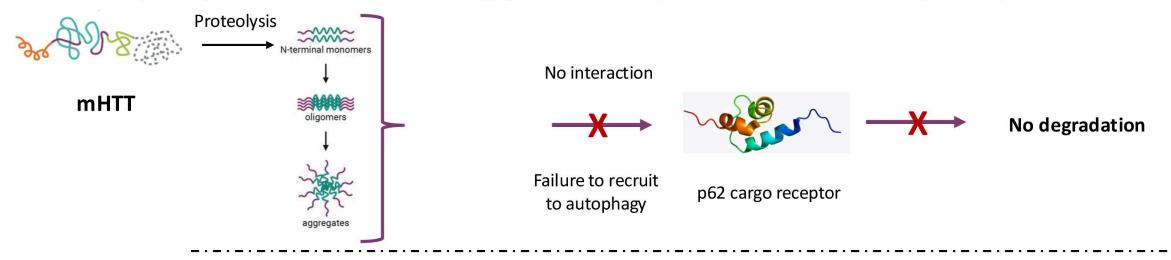
ORI-003

Potential first-in-class, best-in-class disease modifying treatment for HD

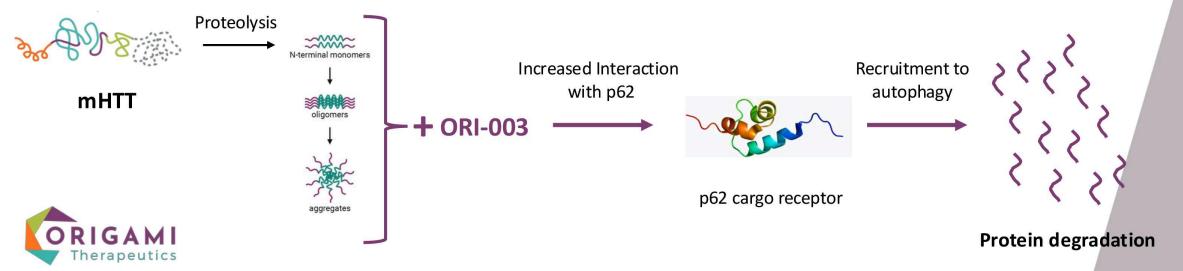
What is ORI-003?

- Small molecule discovered by Origami via proprietary screening approach and medicinal chemistry
- Analogue of ORI-113, an early lead

ORI-003 is efficacious in patient-derived HD fibroblasts and HD neurons by reversing


- Impaired proteostasis by eliminating mHTT via selective autophagy
- Aberrant gene expression
- Aberrant protein expression

ORI-003 and analogs demonstrated efficacy and safety in mouse models of HD



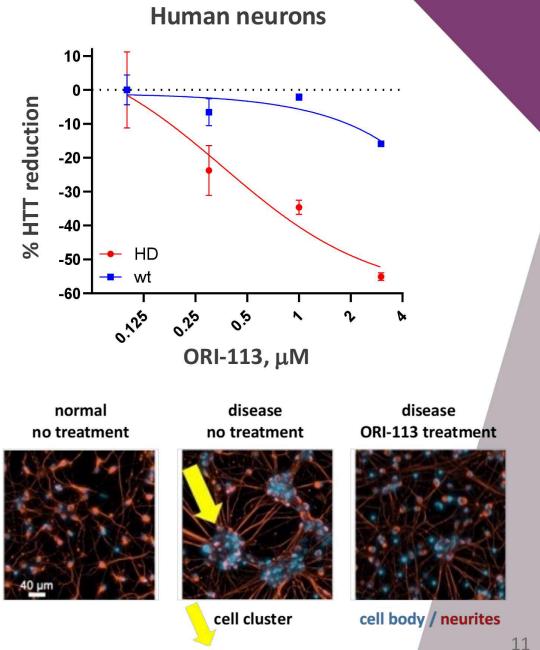
ORI-003 corrects aberrant metabolism via pathway central to neurodegeneration and aging

Mutant HTT (mHTT) causes a deficit in autophagy (inhibits protein, lipid and mitochondria regulation)

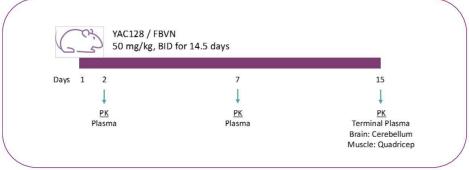
ORI drug overcomes this deficit by directly targeting the mutant misfolded proteins, the underlying cause of disease

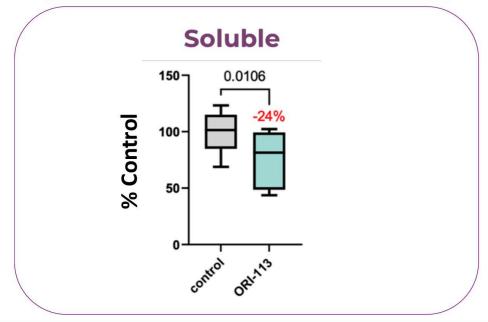
Lead chemical series with excellent drug attributes

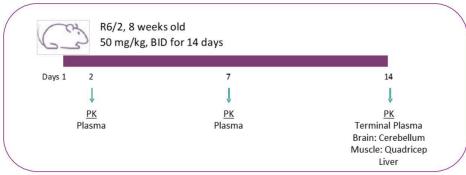
Selectively reduces mHTT and restores cell morphology, protein expression in **HD** neurons

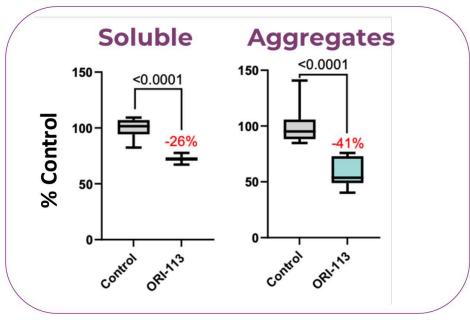

Reverses autophagy deficits in **HD** fibroblasts (novel mechanism of action)

Excellent brain penetration after oral administration




Efficacy in 2 mouse models of **Huntington's disease (HD)**


Lead compound demonstrates in vivo efficacy in 2 HD models


Pre-symptomatic Full length mHTT (Q128)

Symptomatic Exon1 mHTT (Q120)

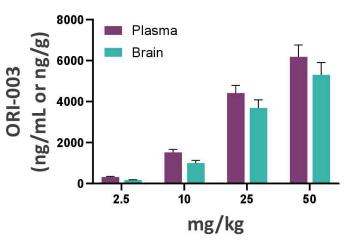
ORI-113 reduces mHTT full-length protein and protein fragments including Exon1 in pre-symptomatic & symptomatic stages of disease

ORI-003 possesses optimal drug characteristics

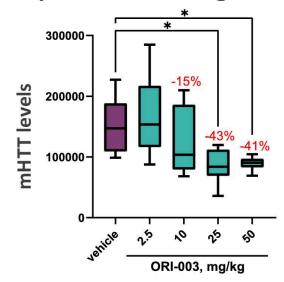
>85% orally bioavailable, PK consistent with once daily dosing

Highly brain penetrant

Well-tolerated, no adverse effects after 2 weeks of daily dosing



Next steps:


- Disease-modifying treatment
- Non-GLP toxicology studies
- Apply for Orphan Designation

Generate a development candidate package to advance to IND-enabling studies

Well-distributed in brain and body

Dose-responsive lowering of mHTT protein

* p<0.05

Origami differentiators Compared to the competitors in HTT-lowering

Delivery

Approach

Target

Origami's differentiators

- Targets mHTT proteins, not mRNA
- Oral administration for systemic treatment to treat entire disease (brain + body)
- >100-fold selective for mHTT protein, sparing normal HTT to restore normal function
- Elimination of existing toxic mHTT protein fragments including Exon1

ORIGAMI Therapeutics	2 Alnylam	VICO	SKYHAWK	Roche	WAVE.	uniQure	PTC
	Spinal	IV inpatient		Spinal	Spinal	Brain Surgery	
Small molecule <u>Mutant HTT</u>	siRNA Total HTT	ASO Mutant HTT	Small molecule Total HTT	ASO Total HTT	ASO Mutant HTT	siRNA / AAV Vector Total HTT	Small Molecule Total HTT
<u>Protein</u>	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA	mRNA
Brain + Body	Brain	Brain + Body	Brain + Body	Brain	Brain	Brain	Brain + Body
Preclinical	Phase 1	Phase 1	Phase 1	Phase 2	Phase 2	Phase 2	Phase 2

Fast-track opportunity to key value inflection point & beyond

Expedited regulatory and clinical path

- Potential for Orphan, Breakthrough & Fast-Track designations after FDA review
- Registrational endpoints are well developed and accepted by FDA
 - Dedicated pre-competitive consortium for regulatory HD-RSC* Critical Path Institute
- <u>Clinical trials</u>: Phase I plan includes proof-of-mechanism & biomarkers in HD patients
 - Strong dedicated support for clinical studies: endpoints, staging, patient recruitment
 - o Precedent for clinical trials from PTC518 Phase 1 and Phase 2 trials
 - Peripheral blood biomarkers validated in PTC518 clinical trials

Commercial opportunity

- 2030 projected global HD sales: \$9.2BWW**
- Reimbursement: Anticipated for demonstration of disease modification

Intellectual property rights

- All assets discovered and wholly-owned by Origami
- Patents for 5 chemical scaffolds filed (LOE 2041 and beyond), ≥2 additional filings in 2025

Origami's current pipeline

	Discovery	Preclinical	IND Enabling	Ph I / Ph II
ORI-003 HD – Degrader A			lon-GLP Tox	
ORI-511 FTD* & related tauopathies		L	ead Optimization	
Other CNS Assets				

^{*}Frontotemporal dementia, tau degrader

Foundational leadership team and advisors

Accomplished scientific & drug development leaders with > 100 years experience

Beth Hoffman, Ph.D. Founder, President and CEO

25 years of CNS drug discovery experience, > 30 assets in clinic; 5 marketed drugs for Cystic Fibrosis & pain

Leslie Schulze, CPA, CGMA **Co-Founder and CFO**

Over 20 years of finance experience in life sciences

Martin Eglitis, Ph.D. **Advisor, Strategy**

25 years of pharma business development & strategy

Katherine Widdowson, Ph.D. **Advisor, Chemistry**

Over 25 years of industry experience in infectious disease, other therapeutic areas

Steven Finkbeiner, M.D., Ph.D.

Professor, Neurology & Physiology, UCSF Director, Taube/Koret Center of Neuro degenarative Disease Research & Center for Systems and Therapeutics, Glad stone Institutes

Kalpana Merchant, Ph.D. President & CEO, TransThera Consulting Adjunct Professor, Feinberg School of Medicine, Northwestern

CEO & CSO roles at several start-ups

University

Robin Mansukhani CEO, Deciduous Therapeutics Previously Co-founder, CEO, Alzeca Biosciences Previous experience in VC/I-**Banking**

Board of Directors:

Beth Hoffman, Ph.D./ Mohamedi (Mo) Kagalwala, Ph.D., Co-founder & COO, Alleo Labs/ open position

Executive Summary Imagine a world without neurodegeneration

Who we are

- Lean startup focused on genetic forms of neurodegeneration with lead program in Huntington's disease (HD)
- Team of experienced pharma executives and experts: scientists, drug development, operational leadership

What we do

- Develop novel first-in-class, best-in-class disease modifying treatments with an innovative discovery approach
- Leverage expedited development and regulatory pathways

Why we win

- Targeting underlying cause of disease (precision medicine)
- Unique positioning with key differentiators and limited competition in a growing market of >\$9B for HD
- Strong initial traction
- Ability to scale to additional indications

Transforming the >\$50B neurodegenerative disease market with best-in-class treatments

Contact: