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ABSTRACT

Background: Machine learning (ML) has emerged as a superior method for the analysis of large datasets, Application of ML is often hindered by incompleteness of the
data which is particularly evident when approaching disease sereening data due to varied testing regimens across medical institutions. Here we explored the utility of
multiple ML algorithms to predict cancer risk when trained using a large but incomplete real-world dataset of tumor marker (TM) values.

Methods: TM sereening data were collected from a large asymptomatic cohort (n = 163,174) at two independent medical centers. The cohort ineluded 785 individuals
who were subsequently diagnosed with cancer, Data included levels of up to eight TMs, but for most subjects, only a subset of the biomarkers were tested. In some
instances, TM values were available at multiple time points, but intervals between tests varied widely. The data were used to train and test varions machine learning
meodels to evaluate their robustness for predicting cancer risk. Multiple methods for data imputation were explored and models were developed for both single time-
point as well as time-series data.

Results: The ML algorithm, long short-term memory (LSTM), demonstrated superiority over other models for dealing with irregular medical data. A cancer risk
prediction tool was trained and validated for a single time-point test of a TM panel including np to four biomarkers (AUROC = 0.831, 95% CI: 0.827-0.835) which
outperformed a single threshold method using the same biomarkers, A seeond model relying on time series data of up to four time-points for 5 TMs had an AUROC of
0.93].

Conclusions: A cancer risk prediction tool was developed by training a LSTM model using a large but incomplete real-world dataset of TM values. The LSTM model
was best able to handle irregular data compared to other ML models. The use of time-series TM data can further improve the predictive performance of LSTM models
even when the intervals between tests vary widely. These risk prediction tools are useful to direct subjects to further sereening sooner, resulting in earlier detection of
occult tumors.

1. Introduction

Diagnosis of cancer at the early stage is one of the most important
factors leading to improved cancer survival rates. The 5-year survival
rate for colorectal cancer (CRC) is around 90% for Stage I cases but drops
to only 10% for late-stage CRC [1]. The improvement of survival rate
due to early diagnosis is better than any state-of-the-art therapies used
for treating cancer in later stages [2]. Moreover, earlier diagnosis of

cancer also results in reduction of treatment costs and loss of economic
productivity [3]. In an attempt to capitalize on the value of early cancer
diagnosis, many tools have been developed for screening. The majority
of these tools screen for only one type of cancer [4]. By way of example,
the fecal occult blood test (FOBT) and colonoscopy are used for CRC
screening [5], while low-dose computed tomography (LDCT) is used for
lung cancer screening [0], and mammography is used for breast cancer
screening [7]. Obviously, these tools are developed to sereen for only

* Corresponding author. 15810 Gaither Drive, Suite 235, Gaithersburg, MD 20877, USA.
** Corresponding author. The First Affiliated Hospital of Chongging Medical University, Chongging 400016, China.

E-mail addresses: jzhon@2020gene.com (J. Zhou), wyh(2382983@163.com (Y. Wang).

! “These authors contributed equally.

https://doi.org/10.1016/5.compbiomed.2022,105362

Received 21 Cetober 2021; Received in revised form 4 February 2022; Accepted 26 February 2022

Awailable online 9 March 2022

0010-4825/€ 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by /4.0,



X. Wu et al.

single types of cancer and their application as yearly comprehensive
screening modalities would be extremely inconvenient for the general
asymptomatic population. The net benefit of cancer sereening by these
tools would be largely reduced due to reduced willingness to subject
oneself to the proscribed screening regimen and low compliance even
subsequent to a clinician’s orders. Moreover, these cancer screening
tools can result in some adverse effects, such as bowel perforation
caused by colonoscopy, or pain caused by mammography. The harm
brought by the screening tools also hinder their widespread use as
sereening tools.

To address the issues raised above, pan-cancer screening modalities
have begun to emerge including tools utilizing nucleic acid sequencing
technology (e.g. Grail's Galleri) [2] or serum protein tumor markers
(TM) analysis (e.g. Thrive's CancerSEEK or 20/20 GeneSystems’
OneTest™) [4]" [2]. The idea of pan-cancer screening aims to screen
multiple types of cancers so that the efficiency of cancer sereening would
be significantly improved. Moreover, these liquid biopsy-based tools
greatly reduce the possible harms that can result from more invasive
forms of screening. Phlebotomy of only several milliliters of blood
generally does no harm. TMs have been identified, developed, approved,
and used in clinical medicine for decades. Typically, individual TMs are
used in the following-up of cancers post therapy [2]. In contrast, some
studies demonstrated combining multiple TMs as panels which can be
used for cancer screening [10]° [11]" [£]. Such combinations are often
less susceptible to measurement artifacts compared to the individual
markers [11]. The experience of either analyzing or using TMs has been
well established in clinical settings. Moreover, analytical measurement
of TMs is significantly less costly than nucleic acid sequencing. Thus, TM
testing has become a more practical, cost-effective, and popular cancer
screening strategy that is widely used in health check-up centers
worldwide, especially in East Asia [12]" [12]. For example, in 2018, a
total of 435 million health check-up examinations were conducted in
China [14], and TM measurement is one of the most common items
performed during these health check-ups. TM panels vary greatly across
different locales as does the frequency of testing.

Classical machine learning (ML) algorithms generally require com-
plete data for training and testing and while missing data can be imputed
using various approaches, this is complicated when employing real-
world datasets which often have many missing values due to varia-
tions in the implementation of testing panels by different clinicians at
different or even the same clinic. We have previously developed an al-
gorithm to predict cancer risk in a real-world cohort of >27,000 subjects
using logistic regression (LR) [15]. However, the prior dataset included
complete single time-point biomarker data for all subjects. Inprovement
of this prior model, including its applicability to a wider geographic
population where certain biomarker tests may not be available, requires
the ability for the model to deal with missing data and time series data.
Cancer is a typical disease developing over time. Cancer development is
a dynamic process between developing into a local tumor and being
eliminated by the immune system [16]. Many cancers can take years to
develop to metastasis from their original lesions [17]. Thus, time series
data would be more comprehensive than single time-point data to know
cancer better. Traditional machine learning approaches (e.g. LR and
random forest (RF)) perform well for regular, complete datasets, but
often fail when confronted with real-world datasets that have many
missing values and many data points. Recurrent neural networks (RNN),
such as LSTM and gated recurrent unit (GRU), have been successfully
applied in many situations with missing values [15]. These ML models
thus represent promising tools for the handling very large real-world
datasets which have irregular data, including single time-point values
where not all subjects have all values available and time-series data
where the interval between multiple tests may vary. LSTM in particular
can be adapted to make use of missing value patterns, time intervals and
complex temporal dependencies in irregular univariate and multivariate
time series data as it has internal gating mechanisms to avoid the van-
ishing and exploding gradient calculation (supplement Figure 1) [12]°
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[20]. Thus, these favorable features make LSTM an appropriate algo-
rithm for dealing with both missing data and lack of regularity in the
intervals between sequential tests as found in TM data collected from
multiple sites and cohorts constituting real-world datasets.

Since training a model with a lot of missing values could lead to
biased estimation and thus impact the model’s quality, data imputation
is necessary to handle missing values. Methods to deal with missing
values can be grouped into three major categories: 1) Missing
completely at random (MCAR); 2) Missing at random; 3) Not missing at
random. Most data imputation approaches foeus on MCAR. There are
different data imputation methods, the simplest one involves replacing
the missing values with 0, constant values, or mean/median values [21]°
[22]. This method of data imputation is easy and fast and generally
worlis well with small datasets, however it may not be very accurate and
is not recommended for use when imputing categorical variables [23].
The k-nearest neighbors (k-NN) approach is another common method
for data imputation. The algorithm uses feature similarity to predict the
missing values [24]. The missing values will be replaced based on how
closely the present values match to their counterparts in other samples.
It is reported that the k-NN method for imputation can achieve much
greater accuracy than simple replacement, however it assumes a rela-
tionship exists between the various biomarkers, is sensitive to outliers
and is computationally expensive since it requires storage of the entire
training dataset in local memory. Another popular imputation method is
multivariate imputation by chained equation (MICE) [25]. This tyvpe of
imputation works by filling the missing data multiple times. Multiple
Imputations (Mls) are much better than a single imputation as it mea-
sures the uncertainty of the missing values in a better way. The chained
equations approach is also very flexible and can handle different vari-
ables of different data types (i.e., continuous or binary) as well as
complexities such as bounds or survey skip patterns [25]. Deep Learning
also affords an approach to data imputation that generally works very
well with both categorical and non-numerical features. In this approach
Machine Learning models are stored which use Deep Neural Networks to
impute the missing values [26].

In this study, we aimed to evaluate the robustness of the TM-based
cancer screening models by using data collected from two different
geographic locations (Chongqing and Taiwan). While the initial goals
were to greatly increase the size of the study cohort and explore appli-
cability of our previous models across different geographic locations, we
were confronted with differences in the number, type and frequency of
tumor markers tested in the different locales. Indeed, even within a
single location not all TMs were measured in all patients. Thus, we
realized that a more robust model needed to be developed which would
allow for risk prediction from incomplete tumor marker panels. Here we
have applied a long short-term memory (LSTM) model to develop a
novel algorithm which was then used in cross-external validations. We
also explored the opportunity for increased accuracy in prediction by
using time-series data.

2. Materials and methods
2.1. Inclusion and exclusion criteria of the datasets

We used the health check-up database obtained from the First
Affilinted Hospital of Chongqing Medical University (CHQ, Chongging)
and another database from Chang Gung Memorial Hospital (CGMH,
Taiwan) incorporating data collected between May 2001 and December
2019. All participants had one or more cancer biomarkers measured for
screening purposes and were asymptomatic at the time of testing. All
subjects were continuously followed after the initial health check-up
examination by monitoring medical records for more than one year to
determine the status of cancer diagnosis. Exclusion criteria included loss
to follow-up, no further medical examination within one year, and
cancer diagnosis before the analytical measurements of TM. This study
was approved by the CHQ Ethies Committee (2020-089).
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The following TMs were included in the algorithm development:
AFP, CA15-3, CA-125, PSA, SCC, CEA, CYFR21-1 and CA19-9. All TM
levels were determined from venipuncture-obtained serum samples by
an automated chemiluminescence immunoassay analyzer (Cobas 8000
e602, Roche Diagnostics Inc), except for SCC which was measured using
commercially available kits from Abbott Diagnostics, Abbott Park, IL,
USA). Clinical reference values for each tumor marker are 25 ng/ml for
AFP, 25 U/ml for CA 15-3, 35 Us/ml for CA-125, 4 ng/ml for PSA, 1.5ng/
ml for SCC, 10 ng,/ml for GEA, 3.3 ng/ml for CYFRA 21-1 and 27 U/ml
for CA 19-9. The laboratories from which the data was obtained have
passed 15015189 certification (NO.ML00036).

2.2. Dataset preprocessing

To fully evaluate the effect of missing values and data imputation on
algorithm development, we employed two different types of datasets.
First, we combined the CGMH and CHQ datasets together, and only kept
patients who have no missing values for the biomarkers (male: AFP,
CEA, CA199, PSA, CYFRAZ211 and SCC, female: AFP, CEA, CA199,
CA125, CA153, CYFRA211and SCC). This dataset includes a total of anly
33,226 patients (Supplement Table 1), representing only 20% of the
entire dataset. We also explored the use of the entire dataset of 163,174
individuals but has many missing TM values, Then we used 70% of all
our raw dataset with missing biomarkers values to build a model and
tested our model using 30% dataset (Supplement Figure 2).

2.3. Data imputation

To evaluate the performance of different imputation methods, we
either directly replaced missing values with 0, or used the available
packages within the Python programming language to employ replace-
ment by KNN, MICE or deep learning imputation. When training the
algorithm, the values were imputed for each of 30 repeats and we took
the average of AUC for overall model performance comparison.

2.4. Training and validation of models

Seven popular algorithms are compared based on AUC and sensi-
tivities when specificity is set at 0.8. The methods are: Decision tree
(DT), Gradient Boosting trees (GB), K nearest neighbor (KNN), Logistic
regression (LR}, Long short-term memory model (LSTM), Naive Bayes
(NB), and Random forest (RF), which are popular methods in machine
learning field [2].

The LSTM model was implemented using the keras package in Py-
thon 3.6, while the other models were implemented using the sklearn
package in Python 3.6. The most popular and key parameters are fine-
tuned and set as the following: for LSTM, we used one hidden layer
with 100 LSTM blocks, and the output layer with a single value pre-
diction with the default sigmoid activation function. The network is
trained for 10 epochs and batch size is 64. KNN used 10 neighbors. For
tree structured models, we tried different numbers of max depths from 1
to 20, ultimately employing depths of 10 and 5 for DT and RF, respec-
tively, for better performance. For the GB model, the max depth was set
to 5, number of estimators was set at 100 and the learning rate was set at
1.0. All the other parameters were set to the defaults.

We split the data into different sets: 70% for training, and 30% for
testing. There is no universal agreement that how many training pro-
cesses need to be done, however based on the Central Limit Theorem
(CLT), sample sizes equal or greater than 30 are considered sufficient
[27], so we repeated this process 30 times, The average AUC of the 30
repeats is used to measure model performance (Supplement Figure 2).

2.5. Follow-up criteria in CHQ

At CHQ, the diagnosis at health check-up involves an analysis of the
combination of TM results with other relevant patient examination
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findings. The TM results of the subjects were classified as elevated if
measured at twice the reference value and were grouped according to
the results of other relevant examination items. The subjects in different
groups were aggressively followed up as outlined in Fig. 1.

2.6. Time series data from CHQ hospital

Time series data is common in real-world cancer screening; however,
it is very rarely employed due to the lack of robust model methods for
analysis of irregular time series data with greatly varied intervals be-
tween tests. Again, the LSTM model was employed to analyze time-series
data. The CHQ dataset included some individuals with time-series data
including up to four time points for 300 individuals who did not develop
cancer in the subsequent follow up period. However, of the 30 in-
dividuals who did develop cancer and for whom more than one time-
point was available, 7 cancer patients only had data at time point 1, 10
cancer patients had 2 time points, 9 cancer patients had 3 time points
and only 5 cancer patients had all data for 4 time points. In order to
balance the data between cancer and non-cancer patients, we randomly
chose some non-cancer patients and assigned missing values to some
data points, so that cancer patients and non-cancer patients had similar
patterns regarding patients with biomarker values at each time point.
The LSTM algorithm was applied to the time series data analysis after
the data preprocessing. To illustrate the effect of number of time points
on model performance, we built 4 LSTM models, 1 model using only 1
time point, 1 model using 2 time points, 1 model using 3 time points and
1 model using all the 4 time points (Supplement Table 2).

2.7. Time-to-diagnosis analysis by using Cox's proportional hazards
rrodel

Time-to-event data analysis is widely used in oncology, such as the
time from cancer diagnosis or treatment initiation to cancer recurrence
or death. The Cox proportional hazards (PH) model allows one to
describe the survival time as a function of multiple prognostic factors.
All eancer patients from CHQ and CGMH were used for Cox analysis.

The survival probability was calculated from a PH model. We used a
k-means clustering algorithm to separate the population into elevated
and high-risk groups. The log-rank test was performed to check whether
the four groups were significantly different.

2.8. Statistical analysis

We used effect size to compare the patient characteristics between
CHQ and CGMH due to the large sample size. We applied a Chi-squared
test to analyze the distribution of cancer cases, and Fisher's exact test
was used for analysis when case number was less than 5 cases.

3. Results
3.1. Subjects

Data was abstracted from two cohorts of subjects: one at CGMH and
the other at CHQ. We have previously used the CGMH dataset to derive a
cancer risk prediction model [15]. This dataset consists of 27,938 unique
subject records all with complete tumor marker data for AFP, CEA,
CA19-9, CYFRA21-1, SCC, PSA (males only), CA-125 (females only) and
CA15-3 (females only). The second dataset from CHQ consists of 135,
236 unique subject records most of whom were tested for a subset of the
tumor markers. For some of the CHQ subjects serial testing data is
available covering multiple years of tumor marker testing. In total, there
were 163,174 participants between the two datasets. For males, 82%
had 2 biomarker tests (AFP, CEA), 68% had 3 biomarker tests (AFP, CEA,
PSA), and only 36% had 4 biomarker tests (AFP, CEA, PSA, CA199). For
females, 83% had AFP and CEA tests, 51% had AFP, CEA and CA199,
and only 34% had AFP, CEA, CAl125 and CA199 tests. Of all the
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Fig. 1. Decision follow chart for the health checkup population in Chongging.

participants, 785 (0.481%) were diagnosed with cancer, including 443
(0.321%) in CHQ and 342 (1.22%) in CGMH. We compared the de-
mographic data between the two institutes (Tables 1 and 2). Median was
used as the statistic to describe the comparison here to avoid bias due to
outliers. The median age was lower in CHQ than in CGMH for both
cancer (Table 1(a)) and noncancer groups (Table 1(b)), indicating a
younger population for health checkup in CHQ which may account for
the lower incidence of cancer in the CHQ population. Regarding TM,
several TM presented notable differences between the two institutes. In
the cancer (Table 1(a)) and noncancer groups (Table 1(b)), CA125,
CA199, and CYFRA211 presented significant higher medians in CHQ.

The differences would be larger than the critical differences of the TM.
Taking CYFRA211 as the example, the medians were 2.5 ng/ml and
1.63 ng/ml in the cancer group of CHQ and CGMH, respectively. The
difference between the medians was 0.87 ng/ml which is 53.37% of
1.63 ng/ml (CGMH medians). The difference could be quite significant
given the upper limit of the reference range of CYFRA211 was typically
3.3 ng/ml, but may be related to variations in the types of cancer
detected in the populations (Table 2(a)).

The distribution of cancer types, was restricted to some specific types
of cancer in CHQ and relatively evenly distributed in CGMH (Table 2
(a)). For CHQ, the top three types of cancer were thyroid cancer, lung

Table 1
Demographic data of the cancer cases (a), and non-cancer cases (b) in Chang Gung Memorial Hospital (CGMH) and Chongging (CHQ).

(=)

CGMH CHQ

count mean std median QR count mean std median I0R effect size
Age 342 58.6 12.74 58 18 433 52.13 12,99 52 19 1.27
AFP 342 1533 19982 3.25 1.9 380 1327 24834 3.19 2.3 0.97
CA125 156 16.2 18.39 166 9 135 22,00 30,90 14.2 10.2 -0.79
CAl53 156 10.6 5.31 89 5.8 83 12.47 10.98 9 4.99 ~0.47
CA199 342 15.3 38.38 7.31 11 177 1163 1278 11.47 10.5 —-2.78
CEA 342 4,51 18.76 1.8 2 390 13,95 181.8 2 1.7 —0.67
CYFRAZ11 342 2 1.46 1.63 1.3 51 277 1.12 2.5 1.71 —0.48
PSA 186 12.4 119.7 141 2 159 4.53 17.59 0.75 0.93 0.67
SCC 342 (.66 0.78 0.5 0.5 65 .89 0.47 0.8 0.5 -0.2
(b

CGMH CHQ

count mean std median I0R count mean std median IQR effect size
Age 27596 48.7 1201 a8 16 134803 44.33 13.67 43 20 0.33
AFP 27596 362 6.72 3.05 1.8 117878 4.6 258.2 3.14 2 1}
CAL25 151641 13.9 44,88 9.53 7.5 20622 16.96 22.37 13.72 a9.04 —0.11
CA153 15160 9.66 4.54 8.4 5.6 14462 10.19 561 9.1 6.2 —0.1
©Al199 27596 .38 19.53 5.83 a7 45606 11.96 37.41 9.4 B.63 —0.07
CEA 27596 1.86 5.3 1.5 1.2 122258 21 10.27 1.71 141 —0.03
CYFRAZ11 27596 1.49 0.88 1.29 0.9 17090 2.19 1.06 2 1.1 —.68
PsA 12436 1.3 2.23 0.82 0.8 55240 1.09 1.93 0.78 0.7 0.11
500 2759 (155 0.9 0.3 0.3 11406 0.87 na 0.8 0.5 -0.53
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Table 2(a)
Cancer cases in Chang Gung Memorial Hospital (CGMH) and Chongging (CHQ)
datasets.

Cancers CGMH percentage CHQ percentage
Bladder cancer 8 2.34% 1 0.23%
Brain cancer 2 0.58% 1] 0.00%
Breast cancer o8 16.96% 51 11.51%
Cervical cancer 19 5.00% 15 3.39%
Colon cancer 31 9.06% Q 2.03%
Duodenum carcinonia. o] 0.00% 1 0.23%
Esophageal cancer & 1.75% 0 0.00%
Gallbladder carcinoma 1 0.29% 2 0.45%
GIST 1 0.29% k| 0.68%
H&N 9 2.63% 1 0.23%
Intrahepatic bile ducts cancer 1 0.29% 0 0.00%
Kidney cancer 16 4.68% 8 1.81%
Leukemia 12 3.51% 1 0.23%
Liposarcoma 1 0.2044 1 0.23%
Liver cancer 39 11.40%4 12 2.71%:
Lung cancer 15 4.3%% 147 33.18%
Lymphoma 8 2.34% [i] 0.00%
Nasal neurcendocrine tumor 1 0.29% 1 0.23%
Ovarian cancer 5 1.46% 5 1.13%
Pancreatic cancer 17 4.97% 3 0.68%
Parotid cancer 0. 294 0 0.00%
Prosiate cancer 30 B.77% 10 2.26%
Retroperitoneun: 1 029 0 0.00%
Skin cancer 11 3.22% 0 0.00%
Stomach caneer 12 3.51% 2 0.45%
Testicle cancer 1 0.29% 0 0.00%
Thyroid cancer 27 7.89%) 170 38.37%
Unknowr 4 1.17% 0 0.00%
Uterus cancer 5 1.4644 i} 0.004%

cancer, and breast cancer, Thyroid cancer cases accounted for 38.37% of
all cancer cases, while lung cancer cases accounted for 33.18% and
breast cancer cases accounted for 11.51%. The top three cancer types
accounted for more than 80% of cancer cases identified at CHQ). Specific
cancer types, including urinary tract malignancies (bladder cancer and
kidney cancer), gastrointestinal malignancies (esophageal cancer,
stomach cancer, hepatocellular carcinoma, colon cancer), hematological
malignanecies (leukemia and lymphoma), prostate cancer, uterine can-
cer, skin cancer, and head and neck cancer, were more frequently
diagnosed in the CGMH population.

For both CHQ and CGMH groups, the majority of cancer cases (CHQ:
82.2%; CGMH: 54.8%) were in the early stages upon diagnosis. Most of
the cancer cases at CHQ were stage 1 (74.72%), which was significantly
greater than CGMH (41.72%). Stage 3 and 4 cancer cases in CHQ
(3.61%) were significantly less than those in CGMH (45.23%) (Table 2
(b)).

3.2. Cancer screening model development

We first set out to explore which model type and which form of data
imputation would yield the best prediction of cancer risk. Towards this
end we employed the following machine learning models: decision tree
(DT), gradient boosting trees (GB), k-nearest neighbor (kNN), logistic

Table 2(b)
Stages for the cancer cases in Chang Gung Memorial Hospital (CGMH) and
Chongqing (CHQ) datasets. *: CGMH excluded stage 4 from dataset.

CGMH n = percentage  CHQ n = percentage  p value
a14 443

Stage < (L0001

0 41 13,068 M T.00%

1 131 41.72% 331 74.72%

2 68 21.66% 62 14.00%

3 74 23.57% 11 2.48%

4 * 5 1.13%

unknown 0 0% 3 0.68%
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regression (LR), long short-term memory model (LSTM), naive Bayes
(NB), and random forest (RF). We also employed four different methods
of data imputation: simple replacement with zero, kNN, MICE and deep
learning (Table 3(a)). Algorithms were trained with 70% of the entirety
of both datasets from CGMH and CH(Q and tested with the remaining
30% of the data (Supplement Figure 2). In training we optimized the
AUROC value. Results are presented in Table 3a. Note that of all of the
models LSTM and RF achieved the highest AUCs and little effect of the
various data imputation methods was noted. Based on the literature,
replacement with zero is the easiest approach for imputation but often
yields the lowest performance since it does not utilize the relationships
among the variables. In our experiment, the results showed that
replacement with zero is comparable to other approaches (Table 3(a)).
Given its simple utilization, we adopted this method for further analyses.
The likely reason for the comparability of this method of imputation
with the others is likely due to the inherent imbalanced nature of the
real-world dataset. Our cancer rate is about 0.5% and the majority of
data belongs to the non-cancer class with a significantly small amount of
data belonging to the cancer class. The other imputation methods as-
sume an equal number of samples in each class, thus, the performance of
these approaches degrade when the class imbalance grows as in the real-
world data. Since in the minovity class, very few samples can be used for
imputation, the imputed values will lean towards the majority class,
which may lead to results not that much different than replacement with
Zero.

To better understand the performance with missing values, we
repeated the experiment limiting the input data to only the samples for
which a complete set of TM values were present. We then trained a
model on 70% of this. We also used the whole raw dataset to build the
model with 70% as training dataset. We subsequently tested the two
separate algorithms with the complete data and raw data from the
remaining 30% of the datasets, respectively (Supplement Figure 2).
Results are reported in Table 3b and indicate that the LSTM model vields
the highest AUC and is the most stable to training with missing data vs.
complete data.

We explored the contribution of different numbers of TMs to the
robustness of the model. Shown in Fig. 2, using only the male data from
both CGMH and CHQ, we trained an LSTM model using age and one TM
(CEA), two TMs (CEA, AFP), three TMs (CEA, AFP, PSA) or four TMs
(CEA, AFP, PSA, CA19-9). Again, we used 70% of the data for training
and 30% for testing. Results are presented Table 4 and are compared to
an analysis of the same dataset using any single marker above the
reference range as the criterion for calling positivity. The comparison to
this single threshold approach is made because this approach mimics
current practice at health check centers. As would be expected, each
additional TM adds to the performance of the model and in all cases
greatly exceeds the utility of the single threshold approach (Table 4).

The final LSTM model trained on 70% of the complete combined
dataset (CGMH and CHQ), using all male and female data, all bio-
markers (AFP, CEA, CA199, PSA, CYFRA211, SCC, CA125, CA153, and
imputing missing values by replacement with “0" yielded an AUROC of
0.75.

Table 3(a)
Data imputation comparison: imputed data vs raw data.
replace with KNN MICE Deep learning
0 imputation imputation imputation
ALIC ste AUC  ste ALIC ste ALIC  ste
T 0.67 0.01 0.66 0.01 0.66 0.01 0.65 0.01
GB 0.65 001 066 0.01 004 001 065 0.01
KNN 0.59  0.00 .61 0.00 056 0.00 060 0.00
LR 069 002 069 001 0.57 0,02 070 0.01
LSTM 072 0.00 073 0.00 068 000 072  0.00
NB 068  0.01 069 001 070 0,00 065 001
RF 0.71 0.01 0.71 0.00 072 0.00 0.71 0.01
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Table 3(b)
Model performance comparison.
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Miss70%, test missing data 30%

full 70%, full 300

AUC sde AUC Sen Sde spec ALIC sde ALIC Sen sde sen spec
Sen

DT 0.70 .00 0.40 0.01 .80 DT (L6 0.01 0,25 0.02 0.80
GB 0.69 0.01 0.38 0.02 0.80 GE 0.65 0.01 0,29 0.03 0.80
KNN 062 0,00 0.16 0.00 0.80 KNN 0.63 .00 .15 0.00 0.80
LR 0.70 0,02 0.46 0,02 0.80 LR 067 0.01 049 0,01 0.80
LSTM 0.74 0,00 0.53 0.01 0.80 LSTM 0.73 0.00 0,51 0,01 0.80
NB 0.72 0.00 0.49 0.01 0.80 NB 0.70 0.00 0.48 0.01 0.80
RF 0.71 0.00 0.48 0.01 0.80 RF 0.73 0.00 0.53 0.01 0.80

DT: Decision tree, GB: Gradient Boosting trees, KNN: K nearest neighbor, LR: Logistic regression, LSTM: Long short-term memory model: NB: Naive Bayes, RF: Random

AFP,CEA,PSA,CALS9

= AFP.CEA,PSA

m AFP,CEA

mCEA

Fig. 2. The percentage of patients with different biomarkers.

forest.
100%
80%
70%
60%
50%
40%
30%
20%
10%
0%
Total 146,197
Table 4
Performance comparison between LSTM and single threshold,
LSTM Single
threshold
Biomarker Mean  Std Mean St
CEA AUROC 0.746  0.001 0.533 0.008
Sensitivity 0.672 0.002 0.097 0017
Specificity  0.672  0.002  0.968 0.001
CEA + AFP AUROC 0.750  0.001 0.544 0.010
Sensitivity  0.670 0.002  0.124 0.021
Specificity 0.680 0.002 0,965 0.002
CEA + AFP 4 PSA AUROC 0.822 0.002  0.610 0.m7
Sensitivity  0.743  0.003  0.303 0.034
Specificity  0.744  0.004 0.918 0.004
CEA 4 AFP 4 PSA 4 AUROC 0.831 0.002 0.628 0.019
CA199 Sensitivity  0.757  0.005  0.354 0.037
Specificity 0.759 0005 0902 0.005

3.3. Time series data model

It is well understood that changes in TM levels over time may be
more indicative of the presence of a growing cancer than single time
point measurements of the same TMs. As more individuals have been
evaluated at annual health check-up appointments, time series data is
becoming meore available within a real-world cancer screening cohort.
As noted above, the LSTM model is well-suited for the analysis of time-
series data especially in instances where there is some irregularity in
that data (Supplement Figure 1). The dataset we analyzed from CHQ
included multi-year TM values (AFP, CEA, PSA, CA199, CA125) from
300 individuals not known to have developed cancer as well as 30

individuals who were diagnosed with cancer during the follow-up
period. For the 300 individuals who were not found to have cancer
during the follow-up period, complete TM test data was available for
four annual test dates. For the 30 individuals who were dingnosed with
cancer, 7 cancer patients only had data at time point 1, 10 cancer pa-
tients had 2 time points, 9 cancer patients had 3 time points and only 5
cancer patients had all data for 4 time points. In order balance the data
between cancer and non-cancer patients, we randomly selected some
non-cancer patients and assigned missing values to some data points, so
that cancer patients and non-cancer patients had similar patterns
regarding patients with biomarker values at each time points. An LSTM
algorithm was trained using this time series data analysis after the data
preprocessing. To illustrate the effect of number of time points on model
performance, we built 4 LSTM algorithms, one using only 1 time point,
one using 2 time points, one using 3 time points and one using all 4 time
points (Supplement Table 2). The results revealed that the AUROC
improved from 0.89 to 0.93 when the number of test point increased

Table 5
Model performance with time series data.
Tinme Biomarkers AUROC  Sensitivity  Specificity
poines
1 AFP, CEA, PSA, CA199, 0.888 0,833 0.827
CAL25
2 AFP, CEA, PSA, CA199, 0.908 0.833 0.837
CAl25
3 AFP, CEA, PSA, CA199, 0.921 0.867 0.863
CAL25
4 ATP, CEA, PSA, CA199, 0.931 0.867 0.883
CALZ5
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from one to four test points (Table 5). The higher AUROC for the one
time point model 0.89 developed here vs. 0.75 for the model developed
above is due to the use of a more limited dataset (330 vs, 163,174
subjects) and the higher percentage of subjects diagnosed with cancer
(9% vs. 0.5%).

3.4. Time-to-diagnosis analysis

We used Cox's proportional hazards algorithm to stratify cancer
cases into elevated and high-risk groups in the CGMH and CHQ cohorts,
respectively. AFP, CEA and CA199 were the risk factors for cancer
diagnoesis, p < 0.001 (Table 6). CGMH and CHQ use very different
criteria for follow-up subsequent to health check examinations. CGMH
simply reports resulting TM values to patients and their primary care
physicians with no guidance for subsequent follow-up. At CHQ, the
health check center is directly involved in follow-up and follows an
aggressive scheme as outlined in Fig. 1. Fig. 3a and 3b depict the per-
centages of subjects diagnosed over time subsequent to a health check
visit. It is evident that in CGMH dataset the high-risk group is diagnosed
relatively quickly, 50% at ~30 days post visit, while within the elevated
risk group the rate of diagnosis is much slower with 50% diagnosed at
~275 days (Fig. 3(b)). The situation at CHQ is very different. Due to the
aggressive follow-up, the rate of diagnosis is the same in both the high
risk and elevated risk groups, with 50% diagnosed by 25 days post visit
and 98% of cases diagnosed by 150 days post visit (Fiz. 3(a)). The
percentages of early-stage cancers diagnosed in CHQ dataset are
significantly higher than CGMH dataset (Table 7). It is evident from this
data that the use of TM testing coupled with aggressive follow-up can
lead to significantly earlier diagnosis of cancer and at early stages,
further supporting the use of machine learning algerithms to better
analyze TM results and predict cancer risk.

4. Discussion

In this study, we developed and extensively validated a cancer
screening model based on the asymptomatic cohorts whose data was
obtained from two independent referral medical centers. Using this
complicated real-world data, an LSTM-based cancer screening model
was trained which can robustly detect multiple cancer types at the early
stages. Moreover, the LSTM algorithm was also advantageous for
dealing with time series data of TM panel tests. The time series data
enhanced the overall performance of the LSTM models for eancer
sereening. Additionally, we developed a Cox-regression based maodel to
stratify the cancer cases into different risk groups. The risk groups
correlated well to the time-to-cancer diagnosis. In the Cox-regression
model, we also found that the intensive follow-up strategy was signifi-
cantly correlated to early cancer diagnosis. The study could be the first
study reporting a tumor markers-based LSTM model being validated by
the largest up-to-date real-world data. The robustness and the early
cancer diagnosis benefit brought by the approach indicates that a tumor
marker-based health check-up combined with an intensive following-up

Table &
Characteristics of the risk stratification model used for time-to-cancer diagnosis
analysis.

Feature Coefficients (SE) HR (95% CI) p value

Age 0007358 1.007385 (0.999898, 0.05
(0.003806) 1.014927)

Strategy of follow-  1.966760 7.147 (6.228964, <0.001

upr {0.137550) 8.201442)

AFP 0.000018 1000018 (1.000012, <0.001
{0.000003) 1.000023)

CEA 0.008052 1.008084 (1.003086, 0.001
{0.002536) 1.013107)

CA199 0.000203 1.000203 (1.000084, <0.001
(0.000061) 1.000322)
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strategy is appropriate to apply to routine health check-up.

Using serum tumor markers for cancer screening has raised consid-
erable interests in these years. Wen et al. reported that a TM panel
composed of multiple TM can be used as a cancer screening tool in an
asymptomatic population [12]. Reference range based single threshold
method was used as the interpretative algorithm for the TM results. The
diagnostic performance of the TM panel is not optimized due to the fact
that the reference ranges of TMs are simply the statistics of a healthy
cohort but not designed for cancer screening. Based on the same cohort,
Wang et al. harnessed ML algorithms as the interpretative tool for
analyzing the TM results [13]. Based on the design, ML algorithms could
find a tailored cut-off for a probability score that is derived from mul-
tiple TMs. A robust diagnostic performance was independently tested
with different cohort in our previous study [1]. Cohen et al. also re-
ported a TM based product (i.e. CancerSEEK) with comparable diag-
nostic performance [2]. These studies demonstrated robust result by
applying ML algorithms in analyzing single time-point TM for cancer
screening independently with different cohorts. The irregularity issue of
TM data that is commonly encountered in daily sereening work has not
been well addressed. To improve the TM-based ML model as a practical
and useful cancer screening tool in the real world, the study to our best
of knowledge is the first study harnessing LSTM as the interpretative tool
for the TM-based cancer screening. Our results demonstrated that the
LSTM model could cope with data irregularity issue (i.e., missing data
and time series data), and thus LSTM is an ideal algorithm for the
TM-based cancer screening.

It is well known that missing or irregular sampled data in healthcare
is a special challenge since most of the traditional statistical models
assume the input data have the similar structure and distributions.
Violation of these assumptions can cause learning problems and lead to
poor model performance [28]. The general approaches for missing
feature problems are handled by imputation, or using more advanced
deep learning techniques such as RNN and LSTM models [29]° [30]. Our
results showed that for an imbalanced dataset, imputation methods do
not lead to better model performance, however they increase the model
complexity. On the contrary, an LSTM model yields consistent and
robust results with simple replacement of missing values with zero. In
the presence of incomplete data, LSTM is robust to missing values by
ignoring them when computing statistics in parameter estimation using
other non-missing data. Also, in server class imbalanced datasets, the
general imputation may impose bias toward the majority classes and
lead to poorer performance. This finding could shed light on the strategy
to deal with missing feature problems in imbalanced dataset. The age of
individuals with cancer detection was significantly older than in-
dividuals without cancer. This finding was consistent with the high
incidence age of cancers in most cases [31]" [32]. These results suggest
that tumor marker screening could benefit most to people over 50 years
old. By analyzing the stages of cancer diagnosis, it was found that 592
cases (75.41%) were diagnosed at early stage by screening tumor
markers. This was related to the occult onset of most cancers, no char-
acteristic manifestations or clinical manifestations [33]. Therefore,
tumor markers, as a means of tumor sereening, can be used in the routine
health examination of generally healthy people, especially those over 50
years old. The Top 10 incidence rate cancers in our study were thyroid
cancer, lung cancer, breast cancer, liver cancer, colorectal cancer,
prostate cancer, cervical cancer, renal cell carcinoma, pancreatic cancer,
and gastric cancer, which accounted for 94.01% of total cancers in the
datasets. But the 2 sites showed different cancer type incidence. In
Chongqing, thyroid cancer, lung cancer, breast cancer, cervical cancer
and liver cancer are top 5 cancers, and accounted for 89.16% (395 out of
443 cases). But for Taiwan, top 5 cancers are breast cancer, liver cancer,
colon cancer, prostate cancer and thyroid eancer, accounted for 54.09%
(185 out of 342 cases). Considering the small ethnic differences between
the two places, there may be regional differences in cancer [34]. For
example, Chongqing has one of the five highest smoking rates in China,
and the mortality rate of lung cancer is 9.09/million [25]. In the health
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check-up popularization with thin-layer CT and tumor markers, such as
CEA, CYFRA211, the detection rate of lung cancers was also significantly
increased [36]. Additionally, there are differences in the health

CHQ data
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check-up examination procedures in the two hospitals. For example, in
CHQ, as a routine health check-up examination item, thyroid color B
ultrasound had been popularized in the population [37], so the
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Table 7
Risk stratification of the cancer cases in Chang Gung Memorial Hospital (CGMH)
and Chongqing (CHQ) datasets. *: CGMH excluded stage 4 from dataset.

CGMH CHQ
stage High risk Elevated group High risk Elevated group
0 0 (0%%) 46 (16%) 0 (0%) 25 (9.5%)
1 5 (16%) 133 (45%) 10 (67%) 187 (71%)
2 12 (38%) 56 (1944) 2 (13%) 46 (179%)
3 15 (47%) 58 (20%) 0 (0%) 4 (1.5%)
4 b 2 (13%) 2 (0.8%)

detection rate of thyroid cancer was high and the prognosis of most
patients was very good [38].

In analyzing time-to-diagnosis for the cancer cases, the follow-up
subsequent to TM results had the most impact on early cancer diag-
nosis. In the CGMH cohort, the time of 50% cases diagnosed with can-
cers was corrected to the risk levels assigned by the algorithm. For high-
risk group, the time of 50% case diagnosed with cancer was ~30 days
post visit, while the elevated group was much later at ~275 days post
visit (Fig. 3(b)). Similar findings were reported in a previous study [4].
In the CHQ) cohort, the findings were very different; the time of 50%
cancer diagnosis for both the high-risk and the elevated risk group were
~25 days, all cancers in high-risk group and 98% of cancers in elevated
risk group were diagnosed by 150 days (Fig. 3(a)). Another difference is
the stages of cancer diagnosis. In CGMH, 85% cancers diagnosed in the
high-risk group were in advanced stages (stage 3 and stage 2, Table 7),
while 619% cancers in the elevated risk group were more early stage
(stage 0 and stage 1, Table 7). In CHQ, most cancers in the high-risk
group (67%) and the elevated risk group (80.5%) were diagnosed at
an early stage (Table 7). The different outcomes are due to the intensive
follow-up strategy adopted at CHQ for following individuals with
abnormal findings that were detected in health checkups (Fig. 1). It is
evident that by combining TM screening and clinical follow-ups, health
check-up examination can be of significant benefit to patients by
detecting cancers earlier before they advance to metastatic disease. This
is the first study of semi-quantitative measurement of early cancer
diagnosis by TM screening and clinical follow-ups. A prospective study is
necessary to clarify the net impact.

Several limitations of this study need to be addressed. First, while the
tumor markers are widely used in East Asia, not all tumor markers have
been widely employed worldwide. Although powered by Al technique,
the irregularity of tumor markers is still the issue that impacts the per-
formance of cancer sereening when only one or two tumor markers are
tested. Furthermore, our Al models are trained, validated, and inde-
pendently tested by using data from East Asia only. Direct application of
the results to other population in other countries or areas requires
further validation in those populations. More bridging studies between
different populations are mandatory before broadly applying the Al-
added approach. Third, time series data of tumor markers are still
much less available than single-point data. Given that time series data
theoretically illustrate a more comprehensive view of diseases, more
time series data of tumor markers are needed for robustly validating its
value. Fourth, we applied LSTM algorithm in analysis of irregular tumor
marker data as a proof-of-concept of the approach. Many other Al al-
gorithms that can deal with irregular data were not tested in the study.
Further optimization of Al algorithms in analyzing the irregular tumor
marker data for cancer screening is worthy of investigation in the future.

5. Conclusion

Based on tumor marker tests, LSTM models can effectively detect
cancer earlier than current conunon medical practice. The performance
of the LSTM models are improved by using time series data of tumor
marker tests. The LSTM models showed flexibility in dealing with
complicated tumor marker tests in real-world datasets, and clinical
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follow-ups are shown to improve early cancer diagnosis. The approach is
readily deployed in routine health check-up examinations.
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